E-ISSN: 2619-9467

Contents    Cover    Publication Date: 19 Apr 2024
Year 2024 - Volume 34 - Issue 1

Open Access

Peer Reviewed

ORIGINAL RESEARCH
621 Viewed665 Downloaded

Host Genetic Polymorphisms and Disease Severity in Pregnant Women with COVID-19 in Türkiye

Full Text PDF  
JCOG. 2024;34(1):1-9
DOI: 10.5336/jcog.2023-96185
Article Language: EN
Copyright Ⓒ 2024 by Türkiye Klinikleri. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Objective: The study aimed to analyze the association between coronavirus disease-2019 (COVID-19) disease severity and genetic susceptibility in pregnant women. Material and Methods: The research included 54 pregnant women with confirmed COVID-19 diagnosis. All volunteers were evaluated physically and biochemically. Angiotensin-converting enzyme (ACE)2 (p.T27A A>G, p.G326E G>A, p.K419T A>C, ACE (p.T776T A>G, and g.16471_16472delinsALU (I/D), AGTR1 c.*86A>C, methylenetetrahydrofolate-reductase (MTHFR) p.A222V C>T and PAI-1-844 G>A were analyzed. Results: The allele frequency was also compared with control groups of the different studies made on Turkish women. MTHFR ''CT'' genotype compared to ''CC'' had lower platelet counts (p=0.015). In ACE ''ID'' genotype, there was a lower D-dimer level compared to ''DD'' genotype (p=0.02). In PAI-1-844G>A, the AA vs. AG+GG genotype and AA vs. GG genotype elevate the risk of hospitalization 6.4-fold (OR: 6.4 95% (Cl): 1.6-25.8 p=0.009), and 4.6-fold (OR: 4.6 95% CI:1.0-21.6 p=0.049), respectively. In MTHFR p.A222V, to have CC vs. CT genotype increased the risk of enoxaparin and antibiotic use 4.1-fold and 3.2-fold at the borderline significance (OR: 4.1 95% Cl: 0.99-16.9 p=0.052 and OR: 3.2 95% Cl: 0.98-10.5 p=0.053), respectively. An allele frequency difference wasn't found between the patient and the healthy women related to the investigated polymorphisms. Conclusion: PAI-1-844G>A, MTHFR p.A222V, and ACE (I/D) associated with a poor COVID-19 outcome, the risk of enoxaparin and antibiotic use, and also increased risk of hospitalization. Allele frequencies of the genes were not different between healthy control women and women with COVID-19; genetic variation may not influence the risk of infection but disease severity.
REFERENCES:
  1. Figliozzi S, Masci PG, Ahmadi N, Tondi L, Koutli E, Aimo A, et al. Predictors of adverse prognosis in COVID-19: a systematic review and meta-analysis. Eur J Clin Invest. 2020;50(10):e13362. [Crossref]  [PubMed] 
  2. Benhamou D, Keita H, Ducloy-Bouthors AS; Obstetric Anaesthesia and Critical Care Club Working Group. Coagulation changes and thromboembolic risk in COVID-19 obstetric patients. Anaesth Crit Care Pain Med. 2020;39(3):351-3. [Crossref]  [PubMed]  [PMC] 
  3. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111-3. [Crossref]  [PubMed] 
  4. Torres-Carrillo NM, Torres-Carrillo N, Vázquez-Del Mercado M, Delgado-Rizo V, Oregón-Romero E, Parra-Rojas I, et al. The -844 G/A PAI-1 polymorphism is associated with mRNA expression in rheumatoid arthritis. Rheumatol Int. 2008;28(4):355-60. [Crossref]  [PubMed] 
  5. Suryamohan K, Diwanji D, Stawiski EW, Gupta R, Miersch S, Liu J, et al. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun Biol. 2021;4(1):475. [Crossref]  [PubMed]  [PMC] 
  6. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135-40. [Crossref]  [PubMed]  [PMC] 
  7. Raghav PK, Raghav A, Lathwal A, Saxena A, Mann Z, Sengar M, et al. Experimental and clinical data analysis for identification of COVID-19 resistant ACE2 mutations. Sci Rep. 2023;13(1):2351. [Crossref]  [PubMed]  [PMC] 
  8. Abboud N, Ghazouani L, Saidi S, Ben-Hadj-Khalifa S, Addad F, Almawi WY, et al. Association of PAI-1 4G/5G and -844G/A gene polymorphisms and changes in PAI-1/tissue plasminogen activator levels in myocardial infarction: a case-control study. Genet Test Mol Biomarkers. 2010;14(1):23-7. [Crossref]  [PubMed] 
  9. Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992;20(6):1433. [Crossref]  [PubMed]  [PMC] 
  10. Herrera CL, Castillo W, Estrada P, Mancilla B, Reyes G, Saavedra N, et al. Association of polymorphisms within the Renin-Angiotensin System with metabolic syndrome in a cohort of Chilean subjects. Arch Endocrinol Metab. 2016;60(3):190-8. [Crossref]  [PubMed]  [PMC] 
  11. Ghafil FA, Mohammad BI, Al-Janabi HS, Hadi NR, Al-Aubaidy HA. Genetic polymorphism of angiotensin converting enzyme and angiotensin II type 1 receptors and their impact on the outcome of acute coronary syndrome. Genomics. 2020;112(1):867-72. [Crossref]  [PubMed] 
  12. Polat S, Şimşek Y. MTHFR C677T polymorphism in Turkish women with polycystic ovary syndrome. Turkish Journal of Endocrinology and Metabolism. 2021;25(1):102-12. [Crossref] 
  13. Dubey P, Reddy SY, Manuel S, Dwivedi AK. Maternal and neonatal characteristics and outcomes among COVID-19 infected women: an updated systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;252:490-501. [Crossref]  [PubMed]  [PMC] 
  14. Zambrano LD, Ellington S, Strid P, Galang RR, Oduyebo T, Tong VT, et al; CDC COVID-19 Response Pregnancy and Infant Linked Outcomes Team. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status - United States, January 22-October 3, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1641-7. [Crossref]  [PubMed]  [PMC] 
  15. Zuo Y, Warnock M, Harbaugh A, Yalavarthi S, Gockman K, Zuo M, et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci Rep. 2021;11(1):1580. [Crossref]  [PubMed]  [PMC] 
  16. Polat S, Şimşek Y. Plasminogen activator inhibitor-1 polymorphism and risk of polycystic ovary syndrome in Turkish women. Meta Gene. 2021;30:100959. [Crossref] 
  17. Balint B, Jepchumba VK, Guéant JL, Guéant-Rodriguez RM. Mechanisms of homocysteine-induced damage to the endothelial, medial and adventitial layers of the arterial wall. Biochimie. 2020;173:100-6. [Crossref]  [PubMed] 
  18. Zoccolella S, Martino D, Defazio G, Lamberti P, Livrea P. Hyperhomocysteinemia in movement disorders: current evidence and hypotheses. Curr Vasc Pharmacol. 2006;4(3):237-43. [Crossref]  [PubMed] 
  19. Ponti G, Pastorino L, Manfredini M, Ozben T, Oliva G, Kaleci S, et al. COVID-19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. J Clin Lab Anal. 2021;35(7):e23798. [Crossref]  [PubMed]  [PMC] 
  20. Tekcan A, Cihangiroglu M, Capraz M, Capraz A, Yigit S, Nursal AF, et al. Association of ACE ID, MTHFR C677T, and MIF-173GC variants with the clinical course of COVID-19 patients. Nucleosides Nucleotides Nucleic Acids. 2023;42(10):782-96. [Crossref]  [PubMed] 
  21. McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol. 2015;8(2):211-9. [Crossref]  [PubMed] 
  22. Naghshtabrizi B, Shakerian F, Hajilooi M, Emami F. Plasma homocysteine level and its genotypes as a risk factor for coronary artery disease in patients undergoing coronary angiography. J Cardiovasc Dis Res. 2012;3(4):276-9. [Crossref]  [PubMed]  [PMC] 
  23. Rongioletti M, Baldassini M, Papa F, Capoluongo E, Rocca B, Cristofaro RD, et al. Homocysteinemia is inversely correlated with platelet count and directly correlated with sE- and sP-selectin levels in females homozygous for C677T methylenetetrahydrofolate reductase. Platelets. 2005;16(3-4):185-90. [Crossref]  [PubMed] 
  24. Karadeniz M, Erdogan M, Zengi A, Eroglu Z, Tamsel S, Olukman M, et al. Methylenetetrahydrofolate reductase C677T gene polymorphism in Turkish patients with polycystic ovary syndrome. Endocrine. 2010;38(1):127-33. [Crossref]  [PubMed] 
  25. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343-6. [Crossref]  [PubMed]  [PMC] 
  26. de Carvalho SS, Simões e Silva AC, Sabino Ade P, Evangelista FC, Gomes KB, Dusse LM, et al. Influence of ACE I/D Polymorphism on circulating levels of plasminogen activator inhibitor 1, D-dimer, ultrasensitive C-reactive protein and transforming growth factor β1 in patients undergoing hemodialysis. PLoS One. 2016;11(3):e0150613. [Crossref]  [PubMed]  [PMC] 
  27. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-9. [Crossref]  [PubMed]  [PMC] 
  28. İnanir S, Yiğit S, Çam Çelikel F, Ates O, Taycan SE, Nursal AF, et al. Relationship between major depressive disorder and ACE gene I/D polymorphism in a Turkish population. Archives of Clinical Psychiatry. 2016;43(2):27-30. [Link] 
  29. Bayram B, Kılıççı C, Onlü H, Ozkurt M, Erkasap N, Yıldırım E, et al. Association of angiotensin converting enzyme (ACE) gene I/D polymorphism and polycystic ovary syndrome (PCOS). Gene. 2011;489(2):86-8. [Crossref]  [PubMed] 
  30. Alkanli N, Sipahi T, Okman Kilic T, Sener S. Lack of association between ACE I/D and AGTR1 A1166C Gene polymorphisms and preeclampsia in Turkish pregnant women of Trakya region. Journal of Gynecology and Obstetrics. 2014;2(4):49-53. [Crossref] 
  31. Cao Y, Sun Y, Tian X, Bai Z, Gong Y, Qi J, et al. Analysis of ACE2 gene-encoded proteins across mammalian species. Front Vet Sci. 2020;7:457. [Crossref]  [PubMed]  [PMC] 
  32. Turner AJ, Tipnis SR, Guy JL, Rice G, Hooper NM. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol. 2002;80(4):346-53. [Crossref]  [PubMed] 
  33. van Geel PP, Pinto YM, Voors AA, Buikema H, Oosterga M, Crijns HJ, et al. Angiotensin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension. 2000;35(3):717-21. [Crossref]  [PubMed] 
  34. Peng N, Liu JT, Gao DF, Lin R, Li R. Angiotensin II-induced C-reactive protein generation: inflammatory role of vascular smooth muscle cells in atherosclerosis. Atherosclerosis. 2007;193(2):292-8. [Crossref]  [PubMed] 
  35. Wang CH, Li SH, Weisel RD, Fedak PW, Dumont AS, Szmitko P, et al. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation. 2003;107(13):1783-90. [Crossref]  [PubMed] 
  36. Bahramali E, Firouzabadi N, Jonaidi-Jafari N, Shafiei M. Renin-angiotensin system genetic polymorphisms: lack of association with CRP levels in patients with coronary artery disease. J Renin Angiotensin Aldosterone Syst. 2014;15(4):559-65. [Crossref]  [PubMed] 
  37. Gormez S, Ekicibasi E, Degirmencioglu A, Paudel A, Erdim R, Gumusel HK, et al. Association between renin-angiotensin-aldosterone system inhibitor treatment, neutrophil-lymphocyte ratio, D-Dimer and clinical severity of COVID-19 in hospitalized patients: a multicenter, observational study. J Hum Hypertens. 2021;35(7):588-97. [Crossref]  [PubMed]  [PMC]