
Fetal health classification plays a crucial role in 
the early detection and management of complications 
during pregnancy, facilitating timely interventions 
that can reduce perinatal risks and promote fetal well-
being.1 Pregnancy-related complications remain a 
significant public health concern globally and, if left 
undiagnosed or mismanaged, may result in adverse 
outcomes, including fetal mortality. This issue is par-
ticularly pronounced in low- and middle-income 
countries, where limited access to healthcare services 
intensifies these risks. 

In response to such global health challenges, the 
Sustainable Development Goals emphasize reducing 
neonatal mortality to 12 per 1.000 live births and 
under-5 mortality to 25 per 1000 live births by 2030. 
Achieving these targets relies heavily on the early di-
agnosis and accurate classification of fetal health 
problems. Cardiotocography (CTG) is a widely used 
non-invasive monitoring tool that provides valuable 
insights into fetal heart rate patterns and uterine con-
tractions.2 While CTG is instrumental in detecting 
fetal distress and preventing adverse outcomes such 
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as preterm birth, its interpretation is often subjective 
and may vary between clinicians, potentially leading 
to inconsistencies in clinical decisions. Therefore, the 
development of systematic and reliable classification 
methods is essential to enhance the objectivity and 
accuracy of fetal health assessments.  

In recent years, machine learning (ML) has 
emerged as a powerful tool in medical diagnostics, 
offering promising results in fetal health classifica-
tion. For instance, Özbay et al. reported 96% accu-
racy using rule-based algorithms, while Sharma et al. 
achieved 96.21% accuracy with a random forest op-
timized through the Enhanced Binary Bat Algorithm. 
Jebadurai et al., Sulihati et al., and Mehbodniya et al. 
employed various feature selection and optimization 
techniques, achieving accuracies ranging from 91% 
to 92%.3-7 Yashaswini et al. combined synthetic mi-
nority oversampling technique (SMOTE) and princi-
pal components analysis (PCA) with Random Forest, 
reaching 97.58% accuracy, and Sefidi et al. enhanced 
the Support Vector Machine (SVM) performance to 
93.98% with a genetic algorithm.8,9 These studies not 
only underscore the effectiveness of ML approaches 
but also highlight persistent challenges such as class 
imbalance and hyperparameter optimization.  

The primary objective of this study was to de-
velop an optimized ML framework that improves 
fetal health classification performance. We employed 
a Light Gradient Boosting Machine (LightGBM), 
recognized for its efficiency and scalability in pro-
cessing large datasets. To address the class imbalance 
issue, we integrate the SMOTE, which enhances mi-
nority class representation, thereby mitigating model 
bias toward the majority class. Furthermore, Optuna, 
an advanced hyperparameter optimization frame-
work, is used to fine-tune the model parameters, en-
suring optimal performance. By combining 
LightGBM, SMOTE, and Optuna, this study aims to 
achieve superior classification accuracy, particularly 
in the challenging suspicious and pathological 
classes, and to enhance the model’s generalizability 
and clinical utility. The proposed model offers the po-
tential to enhance fetal health assessments by en-
abling real-time, automated decision-making, 
minimizing interobserver variability, and streamlin-
ing clinical workflows. These advancements align 

with global healthcare objectives aimed at improving 
maternal and fetal outcomes, particularly in resource-
constrained environments. 

 MATERIAL AND METHODS 

DATASET 
This study used the “Cardiotocography Data Set” 
from University of California, Irvine for fetal health 
prediction.12 The dataset comprises 2.126 records ob-
tained from the cardiotocography (CTG) readings of 
pregnant women. The data were classified by 3 ex-
pert obstetricians, and a consensus classification pro-
cess was conducted to ensure accuracy. Each record 
was categorized based on fetal health status into 
“Healthy”, “Suspicious” and “Pathological”. The 
dataset used in this study adheres to the ethical prin-
ciples outlined in the Declaration of Helsinki. Specif-
ically, the original data collection process ensured 
participant anonymity, confidentiality, and informed 
consent. No personally identifiable information was 
included, and the data were made publicly available 
for research purposes in accordance with ethical 
guidelines; therefore, the article does not need ethics 
committee approval. 

OPTuNA PARAMETER OPTIMIzATION 
Hyperparameter tuning is one of the most critical ML 
workflow steps. Selecting a set of optimal hyperpa-
rameters to improve a model’s performance. Optuna 
is a practical and open-source hyperparameter opti-
mization framework that automates the search for op-
timal hyperparameters. This framework aims to 
maximize the model performance by defining an ob-
jective function and searching for the best parameter 
combinations.13 The optimization process works by 
accepting different hyperparameter combinations as 
input to maximize an objective function and output a 
validation score. The objective function dynamically 
describes the search space by interacting with the trial 
object. Optuna’s efficient sampling method allows 
for processing both types of sampling. 

MACHINE LEARNING CLASSIfICATION MODELS 
In this study, 6 classifiers were used. Stochastic gra-
dient descent (SGD) is an optimization algorithm 
commonly used in ML and deep learning to update 
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model parameters based on gradient estimates itera-
tively, minimizing cost functions.14 Unlike batch gra-
dient descent, which computes the gradient over the 
entire dataset in each iteration, SGD updates the 
model parameters using a randomly selected data 
point per iteration. This stochastic approach reduces 
computational costs and trains large-scale models ef-
ficiently, making it particularly suitable for deep 
learning and large datasets. 

Gradient Boosting (GB) is a powerful ensemble 
learning method that creates a strong predictive model 
by sequentially combining weak learners, typically de-
cision trees (DTs), to minimize loss functions through 
gradient-based optimization.15 Unlike traditional 
boosting methods such as AdaBoost, which assign 
weights to misclassified examples, GB optimizes a dif-
ferentiable loss function using gradient descent at each 
stage.16 In each iteration, a new tree fits the residual er-
rors of the previous model, thereby reducing the bias 
and increasing the prediction accuracy. 

DTs are supervised learning algorithms widely 
used for classification and regression tasks due to 
their interpretability, simplicity, and efficiency in 
handling numerical and categorical data. The funda-
mental idea behind DTs is to recursively split the fea-
ture space into subsets based on decision rules, 
forming a tree-like structure that represents the deci-
sion-making process.17 

Logistic regression (LR) is a statistical and ma-
chine-learning technique commonly used for binary 
classification tasks where the target variable is cate-
gorical (Hosmer, Lemeshow, and Sturdivant).18 Un-
like linear regression, which assumes a continuous 
output, LR applies the logistic (sigmoid) function to 
model the probability of a given example belonging 
to a specific class.18 

K-Nearest Neighbors (KNN) is a widely used 
classification and regression method because of its 
simplicity and effectiveness among supervised learn-
ing techniques.19 The KNN typically uses different 
distance metrics such as the Euclidean distance, Man-
hattan distance, or Minkowski metric to identify the 
nearest neighbors. 

LightGBM is a GB framework that significantly 
improves the efficiency and scalability of traditional 

Gradient Boosting Decision Trees (GBDT) by using 
histogram-based learning and leaf-wise growth strate-
gies.20 Unlike traditional GB methods, which split 
nodes level-wise, LightGBM adopts a leaf-wise 
growth approach that allows for deeper and more ac-
curate splits while maintaining computational effi-
ciency. 

SAMPLE SIzE ADEquACY AND  
POwER CONSIDERATIONS  
While a formal power analysis is a standard approach 
in hypothesis-driven clinical studies to determine the 
necessary sample size for detecting statistically sig-
nificant effects, ML studies-such as the present re-
search-primarily focus on model performance metrics 
(e.g., accuracy, precision, recall, F1-score) rather than 
conventional hypothesis testing. Our study utilized 
the cardiotocography dataset comprising 2.126 sam-
ples, which is widely accepted and used in fetal 
health classification research and is considered suf-
ficient according to prior literature.3,4,7,10 To ensure 
the robustness and reliability of the classification re-
sults, we employed 10-fold cross-validation and re-
ported comprehensive performance metrics, 
demonstrating that the sample size was adequate for 
effectively training and validating the ML models. 
This approach mitigates the risk of overfitting and en-
hances the generalizability of the findings. Therefore, 
we did not include a formal power analysis because 
it is not typically applicable in ML-based studies of 
this nature. 

PROPOSED MODEL 
In the proposed model, a 2-step feature selection pro-
cess was applied to reduce the size of the dataset 
while retaining the most relevant and meaningful fea-
tures, optimizing the performance of the ML models. 
This process removes unnecessary or redundant fea-
tures from the dataset, allowing the model to produce 
more efficient and accurate results. In the first step, 
the fundamental features were identified and sub-
jected to further analysis. In the second step, only the 
features that best supported the classification task 
were selected, enhancing the model’s generalization 
ability. These selected features were then used in the 
subsequent stages to train and evaluate various ML 
models. As a result, this feature selection process op-
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timized the model’s performance and created a more 
streamlined and effective model. The architecture of 
the proposed model is shown in Figure 1. 

 RESuLTS 
In this study, the model development process was 
carried out using the Python programming language 
and the Colab editor. The dataset was divided into 2 
subsets according to the 80% training and 20% test 
data ratio. The model performances were evaluated 
using the accuracy, precision, sensitivity, and F1 
score metrics. The study used 6 different classifiers 
[Stochastic Gradient Descent Classifier (SGDC), GB, 
DT, LR, KNN, and LightGBM]. The dataset and the 
6 models mentioned were directly classified in the 
first step. The resulting complexity matrices are pre-
sented in Figure 2. 

It can be observed that the SGDC model cor-
rectly classified 317 out of 328 healthy class samples, 
misclassifying 10 as suspicious and 1 as pathological 
(Figure 2). For the 58 suspicious class samples, it cor-
rectly classified 24, while misclassifying 31 as 
healthy and 3 as pathological. For the 37 pathologi-
cal class samples, it correctly classified 31, misclas-
sifying 3 as healthy and 3 as suspicious. The GB 
model correctly classified 320  of 328 healthy class 
samples, misclassifying 6 as suspicious and 2 as 
pathological. For the 58 suspicious class samples, it 
correctly classified 42, misclassifying 14 as healthy 
and 2 as pathological. For the 37 pathological class 

samples, it correctly classified 35, misclassifying 2 
as healthy. The DT model correctly classified 301 of 
328 healthy class samples, misclassifying 23 as sus-
picious and 4 as pathological. For the 58 suspicious 
class samples, it correctly classified 43, misclassify-
ing 14 as healthy and 1 as pathological. For the 37 
pathological class samples, it correctly classified 34, 
misclassifying 2 as healthy and 1 as suspicious. The 

FIGURE 1: Proposed model architecture

FIGURE 2: Machine Learning Model Complexity Matrices
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KNN model correctly classified 313 of 328 healthy 
class samples, misclassifying 14 as suspicious and 1 
as pathological. For the 58 suspicious class samples, 
it correctly classified 36, misclassifying 21 as healthy 
and 1 as pathological. For the 37 pathological class 
samples, it correctly classified 29, misclassifying 5 
as healthy and 3 as suspicious. The LR model cor-
rectly classified 312 of 328 healthy class samples, 
misclassifying 14 as suspicious and 2 as pathologi-
cal. For the 58 suspicious class samples, it correctly 
classified 39, misclassifying 17 as healthy and 2 as 
pathological. For the 37 pathological class samples, it 
correctly classified 32, misclassifying 2 as healthy 
and 3 as suspicious. The LightGBM model correctly 
classified 322  of 328 healthy class samples, mis-
classifying 4 as suspicious and 2 as pathological. For 
the 58 suspicious class samples, it correctly classified 
47, misclassifying 9 as healthy and 2 as pathological. 
For the 37 pathological class samples, it correctly 
classified 35, misclassifying 2 as healthy. 

Based on the results provided above, the perfor-
mance of each model is generally successful although 
some errors are observed for each class. In the SGDC 
model, although the correct classification rate for the 
healthy class is high, there are misclassifications in 
the suspicious and pathological classes. The GB 
model classifies healthy class samples with high ac-
curacy, but misclassifications in the suspicious class 
are noteworthy. The DT model also achieved high ac-
curacy for the healthy class, but similar errors oc-
curred for the suspicious and pathological classes. 
The KNN model performs well for healthy class sam-
ples, but significant misclassifications are observed 
in the suspicious class. The LR model makes some 

misclassifications for each class, but its accuracy is 
relatively high. Finally, the LightGBM model stands 
out with its high accuracy in the healthy class and rel-
atively lower error rate in the suspicious class. While 
all models demonstrate high accuracy for the healthy 
class, performance improvements are needed for the 
suspicious and pathological classes. The correct clas-
sification of suspicious and pathological classes is 
critical for the overall success of the model.  

Table 1 demonstrates the performance compar-
isons of the ML models used in this study. Among 
the evaluated models, LightGBM exhibited the high-
est performance, achieving 96% accuracy overall and 
excelling in the suspicious class with 99% accuracy 
and strong recall and F1 scores. GB also performed 
well, maintaining a balance between accuracy (94%) 
and interpretability. In contrast, SGDC showed the 
weakest performance, particularly in the suspicious 
class, where recall dropped to 41%, indicating fre-
quent misclassification. Other models, such as KNN 
and LR, struggled with lower recall rates in critical 
classes. Overall, LightGBM emerged as the most ef-
fective model for fetal health classification. 

The LightGBM model, which achieved the high-
est accuracy among the ML models, was selected in 
the proposed model. Considering the class perfor-
mance differences, data balancing was performed 
using SMOTE, followed by classification with the 
Optuna optimization method. The resulting confusion 
matrices are shown in Figure 3. 

In the proposed model, out of 331 healthy class 
samples, 320 were correctly classified, while 10 were 
misclassified as suspicious and 2 as pathological 
(Figure 3). Of the 320 suspicious class samples, 315 

Accuracy (%) Precision (%) Recall (%) F1-Score 
0 1 2 0 1 2 0 1 2 0 1 2 

SGDC 89 88 97 90 64 88 96 41 83 93 50 86 
GB 94 94 98 92 87 89 97 72 94 96 79 92 
DT 89 90 98 94 64 87 91 74 91 93 68 89 
KNN 90 90 97 92 67 93 95 62 78 93 64 85 
LG 91 91 97 94 69 88 95 67 86 94 68 87 
LightGBM 96 96 99 96 92 89 98 81 94 97 86 92 

TABLE 1:  Performance Comparisons of the ML Models

SGDC: Stochastic Gradient Descent Classifier; GB: Gradient Boosting; DT: Decision tree; KNN: K-Nearest Neighbors; LG: Logistic Regression; LightGBM: Light Gradient Boosting Machine



6

were correctly classified, while 4 were misclassified 
as healthy and 1 as pathological. Of the 338 patho-
logical samples, 336 were correctly classified, while 
2 were misclassified as suspicious. 

The proposed model achieved the highest accu-
racy of 98% for the suspicious class, while achieving 
99% accuracy for both the healthy and pathological 
classes (Table 2).  

 DISCuSSION 
Compared to traditional models such as the SGDC, 
DT, KNN, and Logistic Regression (LG), the pro-
posed model demonstrated superior performance in 
terms of accuracy, precision, recall, and F1-scores 
across all 3 classes (healthy, suspicious, and patho-
logical). The SGDC model exhibited weak recall for 
the suspicious class at 41%, indicating significant dif-
ficulty in accurately identifying this category. The 
DT model achieved a recall of 74% for the suspicious 
class; however, its precision of 64% suggested fre-
quent misclassifications. While the GB and KNN 

models performed reasonably well, their recall val-
ues for the suspicious class remained suboptimal at 
72% and 62%, respectively. By applying SMOTE to 
balance the dataset, sufficient representation of all 
classes was ensured during training. Before SMOTE, 
the suspicious and pathological classes were underrep-
resented, leading to reduced recall and F1-scores in 
these categories. The results confirmed that SMOTE 
effectively mitigated the class imbalance issue. Op-
tuna’s systematic hyperparameter tuning further opti-
mized the LightGBM model by identifying the most 
suitable learning rate, depth, and feature parameters, 
resulting in the highest classification performance.  

The proposed pipeline achieved an overall clas-
sification accuracy of 99%, marking a substantial im-
provement over the models without optimization. As 
illustrated in the confusion matrix, the proposed 
model significantly reduced the misclassification 
rates compared to the baseline models (Figure 3). No-
tably, the suspicious class, which was previously the 
most challenging to classify, achieved 98% accuracy 
and a 97% F1-score, demonstrating the model’s en-
hanced capability in distinguishing this critical cate-
gory. This study introduces an optimized 
classification framework for fetal health assessment 
that integrates LightGBM, SMOTE, and Optuna hy-
perparameter tuning. The results underscore its supe-
rior performance over conventional ML models, 
particularly in addressing class imbalances and im-
proving the recall for clinically significant classes. 
These findings highlight the potential of automated 
ML techniques to advance medical diagnostics and 
support the development of more precise and reliable 
fetal health monitoring systems. 

Several previous studies have explored fetal 
health classification using various ML models and 
achieved promising results. For instance, Özbay et al. 
applied rule-based classifiers such as Decision Table 
and PART, reporting an accuracy of 96%.3 Sharma 

FIGURE 3: LightGBM+SMOTE+Optuna model complexity matrices

Accuracy (%) Precision (%) Recall (%) F1-Score 
1 2 3 1 2 3 1 2 3 1 2 3 

The proposed model 99 98 99 98 96 99 96 98 99 97 97 99 

TABLE 2:  LightGBM+SMOTE+Optuna model performance metric

LightGBM+SMOTE+Optuna
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et al. used the Enhanced Binary Bat Algorithm for 
feature optimization and achieved 96.21% accuracy 
with a random forest classifier.4 Yashaswini et al. ap-
plied the SMOTE and PCA techniques, reaching an 
accuracy of 97.58% using a random forest model.8 
Sefidi et al. employed an optimized SVM approach 
and reported an accuracy of 93.98%.9 Compared with 
these studies, our proposed LightGBM model, fur-
ther enhanced by SMOTE and Optuna-based hyper-
parameter tuning, achieved 99% classification 
accuracy. This marks a notable improvement, espe-
cially in the accurate classification of minority classes 
such as the suspicious and pathological categories, 
which are often more challenging to detect. Our 
model also demonstrated higher recall and F1-scores 
for these classes, highlighting its robustness and clin-
ical relevance. These findings suggest that the inte-
gration of class balancing and automated 
hyperparameter optimization can significantly en-
hance the diagnostic performance of ML models in 
fetal health assessment. 

Additionally, it is important to recognize that 
while this study focused on automated classification 
based on CTG signal data, clinical assessments of fetal 
health are influenced by dynamic physiological factors 
such as uterine activity and the specific timing of de-
celerations. For example, in non-stress tests, fetal health 
classification can vary depending on the phase of the 
uterine contraction in which a deceleration occurs and 
the fetus’s subsequent response. These nuanced clinical 
aspects are critical in real-world evaluations but may 
not be fully captured by ML models that rely solely on 
static CTG metrics. Therefore, future research should 
consider integrating contraction phase-specific fea-
tures and broader clinical parameters to improve the 
precision and applicability of automated fetal health 
classification systems. 

LIMITATIONS 
This study has several limitations that should be 
noted. First, while the dataset used is widely accepted 
in fetal health classification research and considered 
sufficient for ML applications, the study was con-
ducted using data from a single source. Although 
cross-validation was employed to ensure robustness 
and reliability, external validation on independent 

datasets from different populations would further en-
hance the generalizability of the results. Second, 
while the LightGBM model provides feature impor-
tance scores that contribute to understanding key pre-
dictors, we did not integrate advanced explainability 
techniques such as SHapley Additive exPlanations 
(SHAP) or Local Interpretable Model Agnostic Ex-
planation (LIME), which could provide deeper in-
sights into the model’s decision-making process. 
Finally, this research focused on classical ML mod-
els; incorporating deep learning architectures such as 
convolutional neural networks (CNNs) or trans-
former-based models in future studies may offer im-
proved performance and additional comparative 
insights. Moreover, the current model does not ac-
count for the clinical context of uterine contractions, 
such as the phase-specific occurrence of decelera-
tions, which can significantly influence fetal health 
assessments in clinical practice. 

 CONCLuSION 
The proposed model demonstrates superior perfor-
mance compared to traditional models such as the 
SGDC, DT, KNN, and Logistic Regression (LG). It 
outperforms these models in accuracy, precision, re-
call, and F1 scores across all three classes: healthy, sus-
picious, and pathological. Specifically, the SGDC 
model exhibited a low recall of 41% for the suspicious 
class, while the DT model showed a recall of 74%, but 
with low precision (64%). The GB and KNN models 
showed reasonable performance, but their recall for the 
suspicious class remained below optimal. The pro-
posed approach, which used SMOTE for balancing the 
dataset and Optuna for hyperparameter optimization, 
led to significant improvements in the classification 
accuracy, achieving 99% accuracy. 

Although LightGBM offers feature importance 
scores, future studies could integrate explainable ar-
tificial intelligence techniques, such as SHAP values 
or LIME, to enhance the interpretability of decision-
making processes. This research primarily focused 
on traditional ML models. Future work will involve 
a comparison of LightGBM’s performance with deep 
learning models, such as CNNs, LSTMs, or Trans-
formers, which are capable of capturing intricate tem-
poral dependencies in fetal heart rate signals.  
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